skip to main content


Search for: All records

Creators/Authors contains: "Bowler, Diana E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. authors cite an earlier iteration of LTER funding 
    more » « less
  2. Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans. 
    more » « less
  3. Abstract

    Insects are the most ubiquitous and diverse group of eukaryotic organisms on Earth, forming a crucial link in terrestrial and freshwater food webs. They have recently become the subject of headlines because of observations of dramatic declines in some places. Although there are hundreds of long‐term insect monitoring programs, a global database for long‐term data on insect assemblages has so far remained unavailable. In order to facilitate synthetic analyses of insect abundance changes, we compiled a database of long‐term (≥10 yr) studies of assemblages of insects (many also including arachnids) in the terrestrial and freshwater realms. We searched the scientific literature and public repositories for data on insect and arachnid monitoring using standardized protocols over a time span of 10 yr or longer, with at least two sampling events. We focused on studies that presented or allowed calculation of total community abundance or biomass. We extracted data from tables, figures, and appendices, and, for data sets that provided raw data, we standardized trapping effort over space and time when necessary. For each site, we extracted provenance details (such as country, state, and continent) as well as information on protection status, land use, and climatic details from publicly available GIS sources. In all, the database contains 1,668 plot‐level time series sourced from 165 studies with samples collected between 1925 and 2018. Sixteen data sets provided here were previously unpublished. Studies were separated into those collected in the terrestrial realm (103 studies with a total of 1,053 plots) and those collected in the freshwater realm (62 studies with 615 plots). Most studies were from Europe (48%) and North America (29%), with 34% of the plots located in protected areas. The median monitoring time span was 19 yr, with 12 sampling years. The number of individuals was reported in 129 studies, the total biomass was reported in 13 studies, and both abundance and biomass were reported in 23 studies. This data set is published under a CC‐BY license, requiring attribution of the data source. Please cite this paper if the data are used in publications, and respect the licenses of the original sources when using (part of) their data as detailed in Metadata S1: Table 1.

     
    more » « less
  4. Abstract

    Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined.

    We compiled global gridded datasets on climate change, land‐use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world.

    We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo‐Pacific with high climate change and high fishing).

    We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers.

    Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world.

     
    more » « less